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Combinatorics? Ok. But Algebraic Combinatorics?

Strict subpart of combinatorics aiming to connect
combinatorics and algebra.
Provide combinatorial answers to algebraic problems.
Also provide algebraic reasons for combinatorial
workarounds (in French: brandouillages combinatoires).
The Ultimate Goal: provide constructions or proofs
requiring (almost) no mathematical knowledge but offering
great insights in the theory at work.
Our enemies: theories with no examples (algebraic
nonsense) and the induction process.
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Examples

Representation theory!

Integer partitions encoding the irreducible representations
of the symmetric group,
Standard Young tableaux giving the size of their irreducible
representation,
Hive models giving insight on Littlewood-Richardson
coefficients,
Domino tableaux, ...

Today: Operads!
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Cut the deck

Start with a deck of card. Cut it in half and shuffle together both
subdecks. What happens?

With 52 cards and two decks of say 26 cards, we get
(52

26

)
different possibilities.
Do it again. And again. And again... Is it "random" after 6
shuffles?

Oh sorry!
I’m doing algebraic combinatorics not asymptotics. Too bad,
the question is so nice...
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Back to Algebraic combinatorics

Now cut the deck into three parts. Shuffling A and B first then
with C brings other possibilities than shuffling B and C then with
A?

Of course not!

So this operation is commutative and associative!
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Cut the shuffle

Consider two words

u = u1 . . . un v = v1 . . . vp

Their shuffle u v is

u v := (u1 . . . un−1 v).un + (u v1 . . . vp−1).vp.

This equation is clearly a sum of two parts. Separate these
parts. {

u < v := (u1 . . . un−1 v).un
u > v := (u v1 . . . vp−1).vp
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Kill the commuter

With these rules, u < v = v > u and nothing interesting can be
expected.

So define < and > as the components of the shifted shuffle: let
u[k ] be (u1 + k , . . . ,un + k) and define

u d v = u v [|u|].

Now 1 < 1 = 21 and 1 > 1 = 12.

Please welcome the dendriform operators!

J.-C. Novelli
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Left and right

The dendriform operators < and > are not associative: they
cannot both be or their sum wouldn’t.

With three words, there are 8 expressions using < and >:
(u < v) < w u < (v < w)
(u < v) > w u < (v > w)
(u > v) < w u > (v < w)
(u > v) > w u > (v > w)

Do they have some relations?
Of course: their sum is associative so both sums of both
columns are equal.

Do they have other relations?
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Right, right

In all expressions

the last letter comes from a given word:


(u < v) < w

⇐ u

u < (v < w)

⇐ u

(u < v) > w

⇐ w

u < (v > w)

⇐ u

(u > v) < w

⇐ v

u > (v < w)

⇐ v

(u > v) > w

⇐ w

u > (v > w)

⇐ w

Hence 
(u < v) < w = u < (v < w) + u < (v > w)
(u > v) < w = u > (v < w)
(u > v) < w + (u > v) > w = u > (v > w)

And there cannot be other relations with 3 words.

J.-C. Novelli
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Right and Wrong

Are there relations with 4 words not coming from the previous
ones?

Well, no. Is there a good explanation for this?

First, write any dendriform expression as a binary tree:

<

>

u v

w

= (u > v) < w .

J.-C. Novelli
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Forbidden rights

Our relations can be written as rewriting rules on trees:

<

< →

<

< +

<

>

>

< →

<

>

>

> →

>

> +

>

<
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Left overs

How many non-rewritable trees are there?

Split them according to their root:{
S< = xS(S − S<)
S> = xS.

so that
S = 1 + 2xS + x2S2 = (1 + xS)2.

And one easily finds that S is the g.s. of the Catalan numbers.

J.-C. Novelli
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What’s right and what’s left (to be done)

All dendriform expressions with n operands can be rewritten as
Catalan different (non-rewritable) trees. So the dendriform
operad on 1 generator (all leaves of the trees equal to 1) has
graded dimension at most Catalan. Converse property?

With the help of combinatorics!

J.-C. Novelli
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Different rights

Consider the five different trees with n = 3:

<

>

>

<

>

>

<

<

<

>

When applied to 1 on each leaf, one gets

132 + 312 213 123 321 231

Note that these are disjoint sets!
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Characterize these sets

Loday proved that two permutations are in the same subset iff
their inverses satisfy that their decreasing trees have same
shape.

Is that explicit (combinatorial) enough?

Yes!

And No...
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Decreasing trees

If σ = 25481376, its decreasing tree is

'&%$ !"#8
oooo OOOO'&%$ !"#5

�� ??
'&%$ !"#7

�� ??'&%$ !"#2 '&%$ !"#4 '&%$ !"#3
��

'&%$ !"#6'&%$ !"#1

'&%$ !"#4
oooo OOOO'&%$ !"#2

�� ??
'&%$ !"#7

�� ??'&%$ !"#1 '&%$ !"#3 '&%$ !"#6
��

'&%$ !"#8'&%$ !"#5

The tree on the right is the Binary Search tree of
σ−1 = 51632874.

So Loday’s result is equivalent to: two permutations have the
same image iff they have the same BST.

J.-C. Novelli
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From BSTs to combinatorics on words

Can someone guess (without computations) other
permutations having this same tree as BST?

'&%$ !"#4
oooo OOOO'&%$ !"#2

�� ??
'&%$ !"#7

�� ??'&%$ !"#1 '&%$ !"#3 '&%$ !"#6
��

'&%$ !"#8'&%$ !"#5

Hint: the extremal ones are 13256874 and 85673124.

Complete answer: they are the linear extensions of the tree and
an interval of the weak order on permutations.

J.-C. Novelli
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A monoid on trees, a sylvester monoid

Given a permutation, finding all permutations with the same
BST does not require building the BST itself!
It amounts to compute the transitive closure of the following
rewriting rules:

ac . . . b ≡ ca . . . b for all a < b < c.

This is the sylvester monoid.

J.-C. Novelli
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From monoids to operads

On these objects, a one-line proof shows that < and > of two
sylvester classes is a union of sylvester classes.

The converse is also easy to prove: any sylvester class can be
obtained as a linear combination of the dendriform operad
generated by 1. Write the dendriform expression of their
corresponding tree.

So the free object has dimension smaller than Catalan and one
of its (maybe nonfree) instance has dimension greater than
Catalan.

So the free dendriform operad has dimension Catalan exactly.

And so is our instance on permutations which is btw free too.

J.-C. Novelli



Introduction
Combinatorial Answers

Conclusion

Classical examples
The dendriform operators
The dendriform relations
Combinatorial facts about the dendriform operad

From monoids to operads

On these objects, a one-line proof shows that < and > of two
sylvester classes is a union of sylvester classes.

The converse is also easy to prove: any sylvester class can be
obtained as a linear combination of the dendriform operad
generated by 1. Write the dendriform expression of their
corresponding tree.

So the free object has dimension smaller than Catalan and one
of its (maybe nonfree) instance has dimension greater than
Catalan.

So the free dendriform operad has dimension Catalan exactly.

And so is our instance on permutations which is btw free too.
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Byproducts

Simple proofs using no mathematical knowledge,

Easier way of designing generalizations: all combinatorial
objects have analogs of their own:

permutations: packed words: i ∈ w → i − 1 ∈ w , parking
functions, signed permutations, . . .
binary trees: Cayley trees, Cambrian trees, . . .
BST and Decreasing trees: repeated letters, fixed number
of repeated letters, . . .
sylvester monoid: plactic, hyposylvester, metasylvester, . . .

Combinatorial proofs available and reasonable for very
technical examples (quadrigebras),
Hook formulas and (q, t)-hooks now available without
efforts,
Noncommutative setting where algebraic proofs come
easily, multistatistics on permutations for free, . . .
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Open problems

Combinatorial questions:
Study more examples,
Fill in the blanks: describe combinatorially and enumerate
the intervals of orders on permutations, packed words,
parking functions, . . .

Algebraic or geometrical questions:
Provide a general setting where the combinatorial algebras
are related to polytopes,
Get a non semi-simple algebra whose representation
theory rings encode the (commutative) Catalan algebra,
Find a polytope encoding clearly the algebra on parking
functions, . . .
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